Основные команды языка ассемблер. Общая характеристика системы команд языка Assembler для IBM-PC (базовый набор команд, основные способы адресации операндов). Структура программы на языке Assembler МП Порты Память

По назначению можно выделить команды (в скобках приводятся примеры мнемонических кодов операций команд ассемблера ПК типа IBM PC):

l выполнения арифметических операций (ADD и ADC - сложения и сложения с переносом, SUB и SBB - вычитания и вычитания с заемом, MUL и IMUL - умножения без знака и со знаком, DIV и IDIV - деления без знака и со знаком, CMP - сравнения и т. д.);

l выполнения логических операций (OR, AND, NOT, XOR, TEST и т. д.);

l пересылки данных (MOV - переслать, XCHG - обменять, IN - ввести в микропроцессор, OUT - вывести из микропроцессора и т. д.);

l передачи управления (ветвления программы: JMP - безусловного перехода, CALL - вызова процедуры, RET - возврата из процедуры, J* - условного перехода, LOOP - управления циклом и т. д.);

l обработки строк символов (MOVS - пересылки, CMPS - сравнения, LODS - загрузки, SCAS - сканирования. Эти команды обычно используются с префиксом (модификатором повторения) REP;

l прерывания работы программы (INT - программные прерывания, INTO - условного прерывания при переполнении, IRET - возврата из прерывания);

l управления микропроцессором (ST* и CL* - установки и сброса флагов, HLT - останова, WAIT - ожидания, NOP - холостого хода и т. д.).

С полным списком команд ассемблера можно познакомиться в работах .

Команды пересылки данных

l MOV dst, src - пересылка данных (move - переслать из src в dst).

Пересылает: один байт (если src и dst имеют формат байта) или одно слово (если src и dst имеют формат слова) между регистрами или между регистром и памятью, а также заносит непосредственное значение в регистр или в память.

Операнды dst и src должны иметь одинаковый формат - байт или слово.

Src могут иметь тип: r (register) - регистр, m (memory) - память, i (impedance) - непосредственное значение. Dst могут быть типа r, m. Нельзя в одной команде использовать операнды: rsegm совместно с i; два операнда типа m и два операнда типа rsegm). Операнд i может быть и простым выражением:

mov AX, (152 + 101B) / 15

Вычисление выражения выполняется только при трансляции. Флаги не меняет.

l PUSH src - занесение слова в стек (push- протолкнуть; записать в стек изsrc). Помещает в вершину стека содержимое src - любого 16-битового регистра (в том числе и сегментного) или двух ячеек памяти, содержащих 16-битовое слово. Флаги не меняются;

l POP dst - извлечение слова из стека (pop - вытолкнуть; считать из стека в dst). Снимает слово с вершины стека и помещает его в dst - любой 16-битовый регистр (в том числе и сегментный) или в две ячейки памяти. Флаги не меняются.

Программирование на уровне машинных команд - это тот минимальный уровень, на котором возможно составление программ. Система машинных команд должна быть достаточной для того, чтобы реализовать требуемые действия, выдавая указания аппаратуре вычислительной машины.

Каждая машинная команда состоит из двух частей:

  • операционной — определяющей, «что делать»;
  • операндной — определяющей объекты обработки, «с чем делать».

Машинная команда микропроцессора, записанная на языке ассемблера, представляет собой одну строку, имеющую следующий синтакический вид:

метка команда/директива операнд(ы) ;комментарии

При этом обязательным полем в строке является команда или директива.

Метка, команда/директива и операнды (если имеются) разделяются по крайней мере одним символом пробела или табуляции.

Если команду или директиву необходимо продолжить на следующей строке, то используется символ обратный слеш: \.

По умолчанию язык ассемблера не различает заглавные и строчные буквы в написании команд или директив.

Примеры строк кода:

Count db 1 ;Имя, директива, один операнд
mov eax,0 ;Команда, два операнда
cbw ; Команда

Метки

Метка в языке ассемблера может содержать следующие символы:

  • все буквы латинского алфавита;
  • цифры от 0 до 9;
  • спецсимволы: _, @, $, ?.

В качестве первого символа метки может использоваться точка, но некоторые компиляторы не рекомендуют применять этот знак. В качестве меток нельзя использовать зарезервированные имена Ассемблера (директивы, операторы, имена команд).

Первым символом в метке должна быть буква или спецсимвол (но не цифра). Максимальная длина метки – 31 символ. Все метки, которые записываются в строке, не содержащей директиву ассемблера, должны заканчиваться двоеточием: .

Команды

Команда указывает транслятору, какое действие должен выполнить микропроцессор. В сегменте данных команда (или директива) определяет поле, рабочую область или константу. В сегменте кода команда определяет действие, например, пересылка (mov) или сложение (add).

Директивы

Ассемблер имеет ряд операторов, которые позволяют управлять процессом ассемблирования и формирования листинга. Эти операторы называются директивами . Они действуют только в процессе ассемблирования программы и, в отличие от команд, не генерируют машинных кодов.

Операнды

Операнд – объект, над которым выполняется машинная команда или оператор языка программирования.
Команда может иметь один или два операнда, или вообще не иметь операндов. Число операндов неявно задается кодом команды.
Примеры:

  • Нет операндов ret ;Вернуться
  • Один операнд inc ecx ;Увеличить ecx
  • Два операнда add eax,12 ;Прибавить 12 к eax

Метка, команда (директива) и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Однако рекомендуется записывать их в колонку для большего удобства чтения программы.

В качестве операндов могут выступать

  • идентификаторы;
  • цепочки символов, заключенных в одинарные или двойные кавычки;
  • целые числа в двоичной, восьмеричной, десятичной или шестнадцатеричной системе счисления.
Идентификаторы

Идентификаторы – последовательности допустимых символов, использующиеся для обозначения таких объектов программы, как коды операций, имена переменных и названия меток.

Правила записи идентификаторов.

  • Идентификатор может состоять из одного или нескольких символов.
  • В качестве символов можно использовать буквы латинского алфавита, цифры и некоторые специальные знаки: _, ?, $, @.
  • Идентификатор не может начинаться символом цифры.
  • Длина идентификатора может быть до 255 символов.
  • Транслятор воспринимает первые 32 символа идентификатора, а остальные игнорирует.
Комментарии

Комментарии отделяются от исполняемой строки символом; . При этом все, что записано после символа точка с запятой и до конца строки, является комментарием. Использование комментариев в программе улучшает ее ясность, особенно там, где назначение набора команд непонятно. Комментарий может содержать любые печатные символы, включая пробел. Комментарий может занимать всю строку или следовать за командой на той же строке.

Структура программы на ассемблере

Программа, написанная на языке ассемблера, может состоять из нескольких частей, называемых модулями . В каждом модуле могут быть определены один или несколько сегментов данных, стека и кода. Любая законченная программа на ассемблере должна включать один главный, или основной, модуль, с которого начинается ее выполнение. Модуль может содержать сегменты кода, сегменты данных и стека, объявленные при помощи соответствующих директив. Перед объявлением сегментов нужно указать модель памяти при помощи директивы.MODEL.

Пример «ничего не делающей» программы на языке ассемблера:

686P
.MODEL FLAT, STDCALL
.DATA
.CODE
START:

RET
END START

В данной программе представлена всего одна команда микропроцессора. Эта команда RET . Она обеспечивает правильное окончание работы программы. В общем случае эта команда используется для выхода из процедуры.
Остальная часть программы относится к работе транслятора.
.686P — разрешены команды защищенного режима Pentium 6 (Pentium II). Данная директива выбирает поддерживаемый набор команд ассемблера, указывая модель процессора. Буква P, указанная в конце директивы, сообщает транслятору о работе процессора в защищенном режиме.
.MODEL FLAT, stdcall — плоская модель памяти. Эта модель памяти используется в операционной системе Windows. stdcall
.DATA — сегмент программы, содержащий данные.
.CODE — блок программы, содержащей код.
START — метка. В ассемблере метки играют большую роль, что не скажешь о современных языках высокого уровня.
END START — конец программы и сообщение транслятору, что начинать выполнение программы надо с метки START .
Каждый модуль должен содержать директиву END , отмечающую конец исходного кода программы. Все строки, которые следуют за директивой END , игнорируются. Если опустить директиву END , то генерируется ошибка.
Метка, указанная после директивы END , сообщает транслятору имя главного модуля, с которого начинается выполнение программы. Если программа содержит один модуль, метку после директивы END можно не указывать.

Тема 2.5 Основы программирования процессора

С увеличением длины программы все труднее становится запомнить коды различных операций. Некоторую помощь в этом отношении оказывают мнемонические обозначения.

Язык символического кодирования команд называется ассемблером .

Язык ассемблер – это язык, в котором каждое высказывание соответствует ровно одной машинной команде.

Ассемблированием называется преобразование программы с языка ассемблера, т. е. подготовка программы на машинном языке путем замены символических имен операций на машинные коды, а символических адресов – на абсолютные или относительные номера, а также включение библиотечных программ и генерация последовательностей символических команд путем указания конкретных параметров в микрокомандах. Данная программа обычно размещается в ПЗУ или вводится в ОЗУ с некоторого внешнего носителя.

Язык ассемблер имеет несколько особенностей, отличающих его от языков высокого уровня:

1. Это взаимно однозначное соответствие между высказываниями языка ассемблера и машинными командами.

2. Программист на языке ассемблера имеет доступ ко всем объектам и командам, присутствующим на целевой машине.

Представление об основах программирования на машинно-ориентированных языках полезно для:



Лучшего понимания архитектуры ПК и более грамотного использования компьютеров;

Для разработки более рациональных структур алгоритмов программ решения прикладных задач;

Возможности просмотра и корректировки исполняемых программ с расширением.exe и.com, компилированных с любых языков высокого уровня, в случае утраты исходных программ (вызвав указанные программы в отладчик программы DEBUG и декомпилировав их отображение на языке ассемблера);

Составления программ решения наиболее ответственных задач (программа, составленная на машинно-ориентированном языке, обычно эффективнее – короче и быстрее процентов на 30-60 программ, полученных в результате трансляции с языков высокого уровня)

Для реализации процедур, включаемых в основную программу в виде отдельных фрагментов в том случае, если они не могут быть реализованы ни на используемом языке высокого уровня, ни с использованием служебных процедур ОС.

Программа на языке ассемблера может работать только на ЭВМ одного семейства, а программа, написанная на языке высокого уровня, потенциально может работать на разных машинах.

Алфавит языка ассемблера составляют символы ASCII.

Числа только целые. Различают:

Двоичные числа, заканчиваются буквой В;

Десятичные числа, заканчиваются буквой D;

Шестнадцатеричные числа, заканчиваются буквой Н.

Оперативная память, регистры, представление данных

Для определённой серии МП используется индивидуальный язык составления программ – язык ассемблер.

Язык ассемблер занимает промежуточное положение между машинными кодами и языками высокого уровня. Программировать на этом языке проще. Программа на языке ассемблер более рационально использует возможности конкретной машины (точнее МП), чем программа на языке высокого уровня (который более прост для программиста, чем ассемблер). Основные принципы программирования на машинно-ориентированных языках рассмотрим на примере языка ассемблер для МП КР580ВМ80. Для программирования на языке используется общая методика. Конкретные же технические приемы записи программ связаны с особенностями архитектуры и системы команд целевого МП.

Программная модель микропроцессорной системы на основе МП КР580ВМ80

Программная модель МПС в соответствии с рисунком 1

МП Порты Память

S Z AC P C

Рисунок 1

С точки зрения программиста МП КР580ВМ80 имеет следующие программно-доступные регистры.

А – 8-битовый регистр аккумулятор. Является главным регистром МП. Любая операция, выполняемая в АЛУ, предполагает размещение одного из операндов, подлежащих обработке, в аккумуляторе. Результат операции в АЛУ тоже обычно хранится в А.

B, C, D, E, H, L – 8-битовые регистры общего назначения (РОН). Внутренняя память МП. Предназначены для хранения обрабатываемой информации, а также результатов операции. При обработке 16-разрядных слов из регистров образуют пары BC, DE, HL, причем сдвоенный регистр называется первой буквой – B, D, H. В регистровой паре старшим является первый регистр. Особым свойством обладают регистры H, L, используемые как для хранения данных, так и для хранения 16-разрядных адресов ячеек ОЗУ.

FL – регистр флагов (регистр признаков) 8-битовый регистр, в котором сохраняются пять признаков результата выполнения арифметических и логических операций в МП. Формат FL в соответствии с рисунком

Разряд С (CY - carry) - перенос, устанавливается в 1, если был перенос из старшего разряда байта при выполнении арифметических операций.

Разряд Р (parity) – четность, устанавливается в 1, если число единиц в разрядах результата четно.

Разряд АС – дополнительный перенос, предназначен для хранения значения переноса из младшей тетрады результата.

Разряд Z (нуль) – устанавливается в 1, если результат операции равен 0.

Разряд S (знак) – устанавливается в 1, если результат отрицательный, и в 0, если результат положительный.

SP –- указатель стека, 16-разрядный регистр, предназначен для хранения адреса ячейки памяти, куда был записан последний введенный в стек байт.

РС – программный счетчик (счетчик команд), 16-разрядный регистр, предназначен для хранения адреса следующей выполняемой команды. Содержимое счетчика команд автоматически увеличивается на 1 сразу же после выборки очередного байта команды.

В начальной области памяти адреса 0000Н – 07FF располагается управляющая программа и демонстрационные программы. Это область ПЗУ.

0800 – 0АFF - область адресов для записи исследуемых программ. (ОЗУ).

0В00 – 0ВВ0 - область адресов для записи данных. (ОЗУ).

0ВВ0 – начальный адрес стека. (ОЗУ).

Стек – специально организованная область ОЗУ, предназначенная для временного хранения данных или адресов. Число, записанное в стек последним, извлекается из него первым. Указатель стека хранит адрес последней ячейки стека, в которой записана информация. При вызове подпрограммы в стеке автоматически сохраняется адрес возврата в основную программу. Как правило, в начале каждой подпрограммы сохраняются в стеке содержимое всех задействованных при ее выполнении регистров, а в конце подпрограммы восстанавливают их из стека.

Формат данных и структура команд языка ассемблер

Память МП КР580ВМ80 представляет собой массив 8-ьитных слов, называемых байтами, Каждый байт имеет свой 16-разрядный адрес, определяющий его положение в последовательности ячеек памяти. МП может адресовать 65536 байт памяти, которая может содержать как в ПЗУ, так и в ОЗУ.

Формат данных

Данные хранятся в памяти в виде 8-битных слов:

D7 D6 D5 D4 D3 D2 D1 D0

Младшим битом является бит 0, старшим – бит 7.

Команда характеризуется форматом, т. е. числом отведенных для нее разрядов, которые разделены побайтно на определенные функциональные поля.

Формат команд

Команды МП КР580ВМ80 имеют одно, двух или трехбайтный формат. Многобайтные команды должны быть размещены в соседних ЯП. Формат команды зависит от особенностей выполняемой операции.

Первый байт команды содержит код операции, записанный в мнемоническом виде.

Он определяет формат команды и те действия, которые должны быть выполнены МП над данными в процессе ее выполнения, и способ адресации, а также может содержать информацию о нахождении данных.

Во втором и третьем байтах могут находиться данные, над которыми производятся операции, или адреса, указывающие местонахождение данных. Данные, над которыми производятся действия, называются операндами.

Формат однобайтовой команды в соответствии с рисунком 2

Рисунок 4

В командах на языке ассемблера код операции имеет сокращённую форму записи английских слов – мнемоническое обозначение. Мнемоника (от греческого mnemonic – искусство запоминания) позволяет легче запомнить команды по их функциональному назначению.

Перед исполнением исходная программа переводится с помощью программы трансляции, называемой ассемблером, на язык кодовых комбинаций – машинный язык, в таком виде размещается в памяти МП и далее используется при выполнении команды.


Методы адресации

Все коды операндов (входные и выходные) должны где-то располагаться. Они могут находиться во внутренних регистрах МП (наиболее удобный и быстрый вариант). Они могут располагаться в системной памяти (самый распространенный вариант). Наконец, они могут находиться в устройствах ввода-вывода (наиболее редкий случай). Определение места положения операндов производится кодом команды. Существуют разные методы, с помощью которых код команды может определить, откуда брать входной операнд и куда помещать выходной операнд. Эти методы называются методами адресации.

Для МП КР580ВМ80 существуют следующие методы адресации:

Непосредственная;

Регистровая;

Косвенная;

Стековая.

Непосредственная адресация предполагает, что операнд (входной) находится в памяти непосредственно за кодом команды. Операнд обычно представляет собой константу, которую надо куда-то переслать, к чему-то прибавить и т. д. данные содержатся во втором или во втором и третьем байтах команды, причем младший байт данных находится во втором байте команды, а старший – в третьем байте команды.

Прямая (она же абсолютная) адресация предполагает, что операнд (входной или выходной) находится в памяти по адресу, код которого находится внутри программы сразу же за кодом команды. Используется в трехбайтовых командах.

Регистровая адресация предполагает, что операнд (входной или выходной) находится во внутреннем регистре МП. Используется в однобайтовых командах

Косвенная (неявная)адресация предполагает, что во внутреннем регистре МП находится не сам операнд, а его адрес в памяти.

Стековая адресация предполагает, что команда не содержит адрес. Адресация к ячейкам памяти по содержимому 16-разрядного регистра SP (указателя стека).

Система команд

Система команд МП – это полный перечень элементарных действий, которые способен производить МП. Управляемый этими командами МП выполняет простые действия, такие как элементарные арифметические и логические операции, пересылку данных, сравнение двух величин и др. Число команд МП КР580ВМ80 - 78 (с учетом модификаций 244).

Различают следующие группы команд:

Передачи данных;

Арифметические;

Логические;

Команды перехода;

Команды ввода-вывода, управления и работы со стеком.


Символы и сокращения, применяемые при описании команд и составлении программ

Символ Сокращение
ADDR 16-битовый адрес
DATA 8-битовые данные
DATA 16 16-битовые данные
PORT 8-битовый адрес УВВ (устройства ввода-вывода)
BYTE 2 Второй байт команды
BYTE 3 Третий байт команды
R, R1, R2 Один из регистров: A, B, C, D, E, H, L
RP Одна из регистровых пар: В - задает пару ВС; D - задает пару DE; H – задает пару HL
RH Первый регистр пары
RL Второй регистр пары
Λ Логическое умножение
V Логическое сложение
Сложение по модулю два
М Ячейка памяти, адрес которой задаёт содержимое регистровой пары HL, т. е. М = (HL)

Структура команды на языке ассемблера Программирование на уровне машинных команд - это тот минимальный уровень, на котором возможно программирование компьютера. Система машинных команд должна быть достаточной для того, чтобы реализовать требуемые действия, выдавая указания аппаратуре машины. Каждая машинная команда состоит из двух частей: операционной, определяющей «что делать» и операндной, определяющей объекты обработки, то есть то «над чем делать» . Машинная команда микропроцессора, записанная на языке Ассемблера, представляет собой одну строку, имеющую следующий вид: метка команда/директива операнд(ы) ; комментарии Метка, команда/директива и операнд разделяются по крайней мере одним символом пробела или табуляции. Операнды команды разделяются запятыми.

Структура команды на языке ассемблера Команда ассемблера указывает транслятору, какое действие должен выполнить микропроцессор. Директивы ассемблера - параметры, заданные в тексте программы, влияющие на процесс ассемблирования или свойства выходного файла. Операнд определяет начальное значение данных (в сегменте данных) или элементы, над которыми выполняется действие по команде (в сегменте кода). Команда может иметь один или два операнда, или не иметь операндов. Число операндов неявно задается кодом команды. Если команду или директиву необходимо продолжить на следующей строке, то используется символ «обратный слеш»: «» . По умолчанию Ассемблер не различает заглавные и строчные буквы в написании команд и директив. Примеры директивы и команды Count db 1 ; Имя, директива, один операнд mov eax, 0 ; Команда, два операнда

Идентификаторы – последовательности допустимых символов, использующиеся для обозначения имен переменных и названий меток. Идентификатор может состоять из одного или нескольких следующих символов: все буквы латинского алфавита; цифры от 0 до 9; спецсимволы: _, @, $, ? . В качестве первого символа метки может использоваться точка. В качестве идентификаторов нельзя использовать зарезервированные имена ассемблера (директивы, операторы, имена команд). Первым символом идентификатора должна быть буква или спецсимвол. Максимальная длина идентификатора 255 символов, но транслятор воспринимает первые 32, остальные игнорирует. Все метки, которые записываются в строке, не содержащей директиву ассемблера, должны заканчиваться двоеточием «: » . Метка, команда (директива) и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Рекомендуется записывать их в колонку для большей yдобочитаемости программы.

Метки Все метки, которые записываются в строке, не содержащей директиву ассемблера, должны заканчиваться двоеточием «: » . Метка, команда (директива) и операнд не обязательно должны начинаться с какой-либо определенной позиции в строке. Рекомендуется записывать их в колонку для большей yдобочитаемости программы.

Комментарии Использование комментариев в программе улучшает ее ясность, особенно там, где назначение набора команд непонятно. Комментарии начинаются на любой строке исходного модуля с символа «точка с запятой» (;). Все символы, находящиеся справа от «; » до конца строки, являются комментарием. Комментарий может содержать любые печатные символы, включая «пробел» . Комментарий может занимать всю строку или следовать за командой на той же строке.

Структура программы на языке ассемблера Программа, написанная на языке ассемблера, может состоять из нескольких частей, называемых модулями, в каждом из которых могут быть определены один или несколько сегментов данных, стека и кода. Любая законченная программа на языке ассемблере должна включать один главный, или основной, модуль, с которого начинается ее выполнение. Модуль может содержать программные сегменты, сегменты данных и стека, объявленные при помощи соответствующих директив.

Модели памяти Перед объявлением сегментов нужно указать модель памяти при помощи директивы. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Основные модели памяти языка ассемблера: Модель памяти Адресация кода Адресация данных Операционная система Чередование кода и данных TINY NEAR MS-DOS Допустимо SMALL NEAR MS-DOS, Windows Нет MEDIUM FAR NEAR MS-DOS, Windows Нет COMPACT NEAR FAR MS-DOS, Windows Нет LARGE FAR MS-DOS, Windows Нет HUGE FAR MS-DOS, Windows Нет NEAR Windows 2000, Windows XP, Windows Допустимо FLAT NEAR NT,

Модели памяти Модель tiny работает только в 16 -разрядных приложениях MS-DOS. В этой модели все данные и код располагаются в одном физическом сегменте. Размер программного файла в этом случае не превышает 64 Кбайт. Модель small поддерживает один сегмент кода и один сегмент данных. Данные и код при использовании этой модели адресуются как near (ближние). Модель medium поддерживает несколько сегментов программного кода и один сегмент данных, при этом все ссылки в сегментах программного кода по умолчанию считаются дальними (far), а ссылки в сегменте данных - ближними (near). Модель compact поддерживает несколько сегментов данных, в которых используется дальняя адресация данных (far), и один сегмент кода с ближней адресацией (near). Модель large поддерживает несколько сегментов кода и несколько сегментов данных. По умолчанию все ссылки на код и данные считаются дальними (far). Модель huge практически эквивалентна модели памяти large.

Модели памяти Модель flat предполагает несегментированную конфигурацию программы и используется только в 32 -разрядных операционных системах. Эта модель подобна модели tiny в том смысле, что данные и код размещены в одном сегменте, только 32 -разрядном. Для разработки программы для модели flat перед директивой. model flat следует разместить одну из директив: . 386, . 486, . 586 или. 686. Выбор директивы выбора процессора определяет набор команд, доступный при написании программ. Буква p после директивы выбора процессора означает защищенный режим работы. Адресация данных и кода является ближней (near), при этом все адреса и указатели являются 32 -разрядными.

Модели памяти. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Параметр модификатор используется для определения типов сегментов и может принимать значения: use 16 (сегменты выбранной модели используются как 16 -битные) use 32 (сегменты выбранной модели используются как 32 -битные). Параметр соглашение_о_вызовах используется для определения способа передачи параметров при вызове процедуры из других языков, в том числе и языков высокого уровня (C++, Pascal). Параметр может принимать следующие значения: C, BASIC, FORTRAN, PASCAL, SYSCALL, STDCALL.

Модели памяти. MODEL модификатор модель_памяти, соглашение_о_вызовах, тип_ОС, параметр_стека Параметр тип_ОС равен OS_DOS по умолчанию, и на данный момент это единственное поддерживаемое значение этого параметра. Параметр параметр_стека устанавливается равным: NEARSTACK (регистр SS равен DS, области данных и стека размещаются в одном и том же физическом сегменте) FARSTACK (регистр SS не равен DS, области данных и стека размещаются в разных физических сегментах). По умолчанию принимается значение NEARSTACK.

Пример «ничего не делающей» программы. 686 P. MODEL FLAT, STDCALL. DATA. CODE START: RET END START RET - команда микропроцессора. Она обеспечивает правильное окончание работы программы. Остальная часть программы относится к работе транслятора. . 686 P - разрешены команды защищенного режима Pentium 6 (Pentium II). Данная директива выбирает поддерживаемый набор команд ассемблера, указывая модель процессора. . MODEL FLAT, stdcall - плоская модель памяти. Эта модель памяти используется в операционной системе Windows. stdcall - используемое соглашение о вызовах процедур.

Пример «ничего не делающей» программы. 686 P. MODEL FLAT, STDCALL. DATA. CODE START: RET END START . DATA - сегмент программы, содержащий данные. Данная программа не использует стек, поэтому сегмент. STACK отсутствует. . CODE - сегмент программы, содержащей код. START - метка. END START - конец программы и сообщение компилятору, что начинать выполнение программы надо с метки START. Каждая программа должна содержать директиву END, отмечающую конец исходного кода программы. Все строки, которые следуют за директивой END, игнорируются Метка, указанная после директивы END, сообщает транслятору имя главного модуля, с которого начинается выполнение программы. Если программа содержит один модуль, метку после директивы END можно не указывать.

Трансляторы языка ассемблера Транслятор - программа или техническое средство, выполняющее преобразование программы, представленной на одном из языков программирования, в программу на целевом языке, называемую объектным кодом. Помимо поддержки мнемоник машинных команд, каждый транслятор обладает своим собственным набором директив и макросредств, зачастую ни с чем не совместимых. Основные виды трансляторов языка ассемблера: MASM (Microsoft Assembler), TASM (Borland Turbo Assembler), FASM (Flat Assembler) - свободно распространяемый многопроходной ассемблер, написанный Томашем Грыштаром (польск.), NASM (Netwide Assembler) - свободный ассемблер для архитектуры Intel x 86, был создан Саймоном Тэтхемом совместно с Юлианом Холлом и в настоящее время развивается небольшой командой разработчиков на Source. Forge. net.

Src="https://present5.com/presentation/-29367016_63610977/image-15.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 1) Создать проект, выбрав меню File->New->Project и"> Трансляция программы в Microsoft Visual Studio 2005 1) Создать проект, выбрав меню File->New->Project и указав имя проекта (hello. prj) и тип проекта: Win 32 Project. В дополнительных опциях мастера проекта указать “Empty Project”.

Src="https://present5.com/presentation/-29367016_63610977/image-16.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 2) В дереве проекта (View->Solution Explorer) добавить"> Трансляция программы в Microsoft Visual Studio 2005 2) В дереве проекта (View->Solution Explorer) добавить файл, в котором будет содержаться текст программы: Source. Files->Add->New. Item.

Трансляция программы в Microsoft Visual Studio 2005 3) Выбрать тип файла Code C++, но указать имя с расширением. asm:

Трансляция программы в Microsoft Visual Studio 2005 5) Установить параметры компилятора. Выбрать по правой кнопке в файле проекта меню Custom Build Rules…

Трансляция программы в Microsoft Visual Studio 2005 и в появившемся окне выбрать Microsoft Macro Assembler.

Трансляция программы в Microsoft Visual Studio 2005 Проверить по правой кнопке в файле hello. asm дерева проекта меню Properties и установить General->Tool: Microsoft Macro Assembler.

Src="https://present5.com/presentation/-29367016_63610977/image-22.jpg" alt="Трансляция программы в Microsoft Visual Studio 2005 6) Откомпилировать файл, выбрав Build->Build hello. prj."> Трансляция программы в Microsoft Visual Studio 2005 6) Откомпилировать файл, выбрав Build->Build hello. prj. 7) Запустить программу, нажав F 5 или выбрав меню Debug->Start Debugging.

Программирование в ОС Windows Программирование в OC Windows основывается на использовании функций API (Application Program Interface, т. е. интерфейс программного приложения). Их количество достигает 2000. Программа для Windows в значительной степени состоит из таких вызовов. Все взаимодействие с внешними устройствами и ресурсами операционной системы происходит, как правило, посредством таких функций. Операционная система Windows использует плоскую модель памяти. Адрес любой ячейки памяти будет определяться содержимым одного 32 -битного регистра. Возможны 3 типа структур программ для Windows: диалоговая (основное окно - диалоговое), консольная, или безоконная структура, классическая структура (оконная, каркасная).

Вызов функций Windows API В файле помощи любая функция API представлена в виде тип имя_функции (ФА 1, ФА 2, ФА 3) Тип – тип возвращаемого значения; ФАх – перечень формальных аргументов в порядке их следования Например, int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Данная функция выводит на экран окно с сообщением и кнопкой (или кнопками) выхода. Смысл параметров: h. Wnd -дескриптор окна, в котором будет появляться окно-сообщение, lp. Text - текст, который будет появляться в окне, lp. Caption - текст в заголовке окна, u. Type - тип окна, в частности можно определить количество кнопок выхода.

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Практически все параметры API-функций в действительности 32 -битные целые числа: HWND - 32 -битное целое, LPCTSTR - 32 -битный указатель на строку, UINT - 32 -битное целое. К имени функций часто добавляется суффикс "А" для перехода к более новым версиям функций.

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); При использовании MASM необходимо в конце имени добавить @N N – количество байт, которое занимают в стеке переданные аргументы. Для функций Win 32 API это число можно определить как количество аргументов n, умноженное на 4 (байта в каждом аргументе): N=4*n. Для вызова функции используется команда CALL ассемблера. При этом все аргументы функции передаются в нее через стек (команда PUSH). Направление передачи аргументов: СЛЕВА НАПРАВО - СНИЗУ ВВЕРХ. Первым будет помещаться в стек аргумент u. Type. Вызов указанной функции будет выглядеть так: CALL Message. Box. A@16

Вызов функций Windows API int Message. Box (HWND h. Wnd, LPCTSTR lp. Text, LPCTSTR lp. Caption, UINT u. Type); Результат выполнения любой API функции - это, как правило, целое число, которое возвращается в регистре EAX. Директива OFFSET представляет собой «смещение в сегменте» , или, переводя в понятия языков высокого уровня, «указатель» начала строки. Директива EQU подобно #define в языке СИ определяет константу. Директива EXTERN указывает транслятору, что функция или идентификатор является внешним по отношению к данному модулю.

Пример программы «Привет всем!» . 686 P. MODEL FLAT, STDCALL. STACK 4096. DATA MB_OK EQU 0 STR 1 DB "Моя первая программа", 0 STR 2 DB "Привет всем!", 0 HW DD ? EXTERN Message. Box. A@16: NEAR. CODE START: PUSH MB_OK PUSH OFFSET STR 1 PUSH OFFSET STR 2 PUSH HW CALL Message. Box. A@16 RET END START

Директива INVOKE Транслятор языка MASM позволяет также упростить вызов функций с использованием макросредства – директивы INVOKE: INVOKE функция, параметр1, параметр2, … При этом нет необходимости добавлять @16 к вызову функции; параметры записываются точно в том порядке, в котором приведены в описании функции. макросредствами транслятора параметры помещаются в стек. для использования директивы INVOKE необходимо иметь описание прототипа функции с использованием директивы PROTO в виде: Message. Box. A PROTO: DWORD, : DWORD Если в программе используется множество функций Win 32 API, целесообразно воспользоваться директивой include C: masm 32includeuser 32. inc

Тема 1.4 Ассемблерная мнемоника. Структура и форматы команд. Виды адресации. Система команд микропроцессора

План:

1 Язык ассемблера. Основные понятия

2 Символы языка ассемблера

3 Типы операторов ассемблера

4 Директивы ассемблера

5 Система команд процессора

1 Я зык ассемблера. Основные понятия

Язык ассемблера - это символическое представление машинного языка. Все процессы в машине на самом низком, аппаратном уровне приводятся в действие только командами (инструкциями) машинного языка. Отсюда понятно, что, несмотря на общее название, язык ассемблера для каждого типа компьютера свой.

Программа на ассемблере представляет собой совокупность блоков памяти, называемых сегментами памяти. Программа может состоять из одного или нескольких таких блоков-сегментов. Каждый сегмент содержит совокупность предложений языка, каждое из которых занимает отдельную строку кода программы.

Предложения ассемблера бывают четырех типов:

1) команды или инструкции, представляющие собой символические аналоги машинных команд. В процессе трансляции инструкции ассемблера преобразуются в соответствующие команды системы команд микропроцессора;

2) макрокоманды - оформляемые определенным образом предложения текста программы, замещаемые во время трансляции другими предложениями;

3) директивы, являющиеся указанием транслятору ассемблера на выполнение некоторых действий. У директив нет аналогов в машинном представлении;

4) строки комментариев , содержащие любые символы, в том числе и буквы русского алфавита. Комментарии игнорируются транслятором.

­ Структура программы на ассемблере. Синтаксис ассемблера.

Предложения, составляющие программу, могут представлять собой синтаксическую конструкцию, соответствующую команде, макрокоманде, директиве или комментарию. Для того чтобы транслятор ассемблера мог распознать их, они должны формироваться по определенным синтаксическим правилам. Для этого лучше всего использовать формальное описание синтаксиса языка наподобие правил грамматики. Наиболее распространенные способы подобного описания языка программирования - синтаксические диаграммы и расширенные формы Бэкуса-Наура. Для практического использования более удобны синтаксические диаграммы. К примеру, синтаксис предложений ассемблера можно описать с помощью синтаксических диаграмм, показанных на следующих рисунках 10, 11, 12.

Рисунок 10 - Формат предложения ассемблера


­ Рисунок 11 - Формат директив

­ Рисунок 12 - Формат команд и макрокоманд

На этих рисунках:

­ имя метки - идентификатор, значением которого является адрес первого байта того предложения исходного текста программы, которое он обозначает;

­ имя - идентификатор, отличающий данную директиву от других одноименных директив. В результате обработки ассемблером определенной директивы этому имени могут быть присвоены определенные характеристики;

­ код операции (КОП) и директива - это мнемонические обозначения соответствующей машинной команды, макрокоманды или директивы транслятора;

­ операнды - части команды, макрокоманды или директивы ассемблера, обозначающие объекты, над которыми производятся действия. Операнды ассемблера описываются выражениями с числовыми и текстовыми константами, метками и идентификаторами переменных с использованием знаков операций и некоторых зарезервированных слов.

Синтаксические диаграммы помогают найти и затем пройти путь от входа диаграммы (слева) к ее выходу (направо). Если такой путь существует, то предложение или конструкция синтаксически правильные. Если такого пути нет, значит эту конструкцию компилятор не примет.

­ 2 Символы языка ассемблера

Допустимыми символами при написании текста программ являются:

1) все латинские буквы: A-Z , a-z . При этом заглавные и строчные буквы считаются эквивалентными;

2) цифры от 0 до 9 ;

3) знаки ? , @ , $ , _ , & ;

4) разделители , . () < > { } + / * % ! " " ? = # ^ .

Предложения ассемблера формируются из лексем , представляющих собой синтаксически неразделимые последовательности допустимых символов языка, имеющие смысл для транслятора.

Лексемами являются:

1) идентификаторы - последовательности допустимых символов, использующиеся для обозначения таких объектов программы, как коды операций, имена переменных и названия меток. Правило записи идентификаторов заключается в следующем: идентификатор может состоять из одного или нескольких символов;

2) цепочки символов - последовательности символов, заключенные в одинарные или двойные кавычки;

3) целые числав одной из следующих систем счисления: двоичной, десятичной, шестнадцатеричной. Отождествление чисел при записи их в программах на ассемблере производится по определенным правилам:

4) десятичные числа не требуют для своего отождествления указания каких-либо дополнительных символов, например 25 или 139. Для отождествления в исходном тексте программы двоичных чисел необходимо после записи нулей и единиц, входящих в их состав, поставить латинское “b ”, например 10010101b .

5) шестнадцатеричные числа имеют больше условностей при своей записи:

Во-первых, они состоят из цифр 0...9 , строчных и прописных букв латинского алфавита a , b , c , d , e , f или A , B , C , D , E , F .

Во-вторых, у транслятора могут возникнуть трудности с распознаванием шестнадцатеричных чисел из-за того, что они могут состоять как из одних цифр 0...9 (например, 190845), так и начинаться с буквы латинского алфавита (например, ef15 ). Для того чтобы "объяснить" транслятору, что данная лексема не является десятичным числом или идентификатором, программист должен специальным образом выделять шестнадцатеричное число. Для этого на конце последовательности шестнадцатеричных цифр, составляющих шестнадцатерич-ное число, записывают латинскую букву “h ”. Это обязательное условие. Если шестнадцатеричное число начинается с буквы, то перед ним записывается ведущий ноль: 0 ef15h.

Практически каждое предложение содержит описание объекта, над которым или при помощи которого выполняется некоторое действие. Эти объекты называются операндами . Их можно определить так: операнды - это объекты (некоторые значения, регистры или ячейки памяти), на которые действуют инструкции или директивы, либо это объекты, которые определяют или уточняют действие инструкций или директив.

Возможно, провести следующую классификацию операндов:

­ постоянные или непосредственные операнды;

­ адресные операнды;

­ перемещаемые операнды;

­ счетчик адреса;

­ регистровый операнд;

­ базовый и индексный операнды;

­ структурные операнды;

­ записи.

Операнды являются элементарными компонентами, из которых формируется часть машинной команды, обозначающая объекты, над которыми выполняется операция. В более общем случае операнды могут входить как составные части в более сложные образования, называемые выражениями .

Выражения представляют собой комбинации операндов и операторов, рассматриваемые как единое целое. Результатом вычисления выражения может быть адрес некоторой ячейки памяти или некоторое константное (абсолютное) значение.

­ 3 Типы операторов ассемблера

Перечислим возможные типы операторов ассемблера и синтаксические правила формирования выражений ассемблера:

­ арифметические операторы;

­ операторы сдвига;

­ операторы сравнения;

­ логические операторы;

­ индексный оператор;

­ оператор переопределения типа;

­ оператор переопределения сегмента;

­ оператор именования типа структуры;

­ оператор получения сегментной составляющей адреса выражения;

­ оператор получения смещения выражения.

1 Директивы ассемблера

­ Директивы ассемблера бывают:

1) Директивы сегментации. В ходе предыдущего обсуждения мы выяснили все основные правила записи команд и операндов в программе на ассемблере. Открытым остался вопрос о том, как правильно оформить последовательность команд, чтобы транслятор мог их обработать, а микропроцессор - выполнить.

При рассмотрении архитектуры микропроцессора мы узнали, что он имеет шесть сегментных регистров, посредством которых может одновременно работать:

­ с одним сегментом кода;

­ с одним сегментом стека;

­ с одним сегментом данных;

­ с тремя дополнительными сегментами данных.

Физически сегмент представляет собой область памяти, занятую командами и (или) данными, адреса которых вычисляются относительно значения в соответствующем сегментном регистре. Синтаксическое описание сегмента на ассемблере представляет собой конструкцию, изображенную на рисунке 13:


­ Рисунок 13 - Синтаксическое описание сегмента на ассемблере

Важно отметить, что функциональное назначение сегмента несколько шире, чем простое разбиение программы на блоки кода, данных и стека. Сегментация является частью более общего механизма, связанного с концепцией модульного программирования. Она предполагает унификацию оформления объектных модулей, создаваемых компилятором, в том числе с разных языков программирования. Это позволяет объединять программы, написанные на разных языках. Именно для реализации различных вариантов такого объединения и предназначены операнды в директиве SEGMENT.

2) Директивы управления листингом. Директивы управления листингом делятся на следующие группы:

­ общие директивы управления листингом;

­ директивы вывода в листинг включаемых файлов;

­ директивы вывода блоков условного ассемблирования;

­ директивы вывода в листинг макрокоманд;

­ директивы вывода в листинг информации о перекрестных ссылках;

­ директивы изменения формата листинга.

2 Система команд процессора

Система команд процессора представлена на рисунке 14.

Рассмотрим основные группы команд.

­ Рисунок 14 - Классификация команд ассемблера

Команды бывают:

1 Команды пересылки данных. Эти команды занимают очень важное место в системе команд любого процессора. Они выполняют следующие важнейшие функции:

­ сохранение в памяти содержимого внутренних регистров процессора;

­ копирование содержимого из одной области памяти в другую;

­ запись в устройства ввода/вывода и чтение из устройств ввода/вывода.

В некоторых процессорах все эти функции выполняются одной единственной командой MOV (для байтовых пересылок - MOVB ) но с различными методами адресации операндов.

В других процессорах помимо команды MOV имеется еще несколько команд для выполнения перечисленных функций. Также к командам пересылки данных относятся команды обмена информацией (их обозначение строится на основе слова Exchange ). Может быть предусмотрен обмен информацией между внутренними регистрами, между двумя половинами одного регистра (SWAP ) или между регистром и ячейкой памяти.

2 Арифметические команды. Арифметические команды рассматривают коды операндов как числовые двоичные или двоично-десятичные коды. Эти команды могут быть разделены на пять основных групп:

­ команды операций с фиксированной запятой (сложение, вычитание, умножение, деление);

­ команды операций с плавающей запятой (сложение, вычитание, умножение, деление);

­ команды очистки;

­ команды инкремента и декремента;

­ команда сравнения.

3 Команды операций с фиксированной запятой работают с кодами в регистрах процессора или в памяти как с обычными двоичными кодами. Команды операций с плавающей запятой (точкой) используют формат представления чисел с порядком и мантиссой (обычно эти числа занимают две последовательные ячейки памяти). В современных мощных процессорах набор команд с плавающей запятой не ограничивается только четырьмя арифме-тическими действиями, а содержит и множество других более сложных команд, например, вычисление тригонометрических функций, логарифмических функций, а также сложных функций, необходимых при обработке звука и изображения.

4 Команды очистки предназначены для записи нулевого кода в регистр или ячейку памяти. Эти команды могут быть заменены командами пересылки нулевого кода, но специальные команды очистки обычно выполняются быстрее, чем команды пересылки.

5 Команды инкремента (увеличения на единицу) и декремента

(уменьшения на единицу) также бывают очень удобны. Их можно в принципе заменить командами суммирования с единицей или вычитания единицы, но инкремент и декремент выполняются быстрее, чем суммирование и вычитание. Эти команды требуют одного входного операнда, который одновременно является и выходным операндом.

6 Команда сравнения предназначена для сравнения двух входных операндов. По сути, она вычисляет разность этих двух операндов, но выходного операнда не формирует, а всего лишь изменяет биты в регистре состояния процессора по результату этого вычитания. Следующая за командой сравнения команда (обычно это команда перехода) будет анализировать биты в регистре состояния процессора и выполнять действия в зависимости от их значений. В некоторых процессорах предусмотрены команды цепочечного сравнения двух последовательностей операндов, находящихся в памяти.

7 Логические команды. Логические команды выполняют над операндами логические (побитовые) операции, то есть они рассматривают коды операндов не как единое число, а как набор отдельных битов. Этим они отличаются от арифметических команд. Логические команды выполняют следующие основные операции:

­ логическое И, логическое ИЛИ, сложение по модулю 2 (Исключающее ИЛИ);

­ логические, арифметические и циклические сдвиги;

­ проверка битов и операндов;

­ установка и очистка битов (флагов) регистра состояния процессора (PSW ).

Команды логических операций позволяют побитно вычислять основные логические функции от двух входных операндов. Кроме того, операция И используется для принудительной очистки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие очистки, установлены в нуль). Операция ИЛИ применяется для принудительной установки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие установки в единицу, равны единице). Операция «Исключающее ИЛИ» используется для инверсии заданных битов (в качестве одного из операндов при этом применяется код маски, в котором биты, подлежащие инверсии, установлены в единицу). Команды требуют двух входных операндов и формируют один выходной операнд.

8 Команды сдвигов позволяют побитно сдвигать код операнда вправо (в сторону младших разрядов) или влево (в сторону старших разрядов). Тип сдвига (логический, арифметический или циклический) определяет, каково будет новое значение старшего бита (при сдвиге вправо) или младшего бита (при сдвиге влево), а также определяет, будет ли где-то сохранено прежнее значение старшего бита (при сдвиге влево) или младшего бита (при сдвиге вправо). Циклические сдвиги позволяют сдвигать биты кода операнда по кругу (по часовой стрелке при сдвиге вправо или против часовой стрелки при сдвиге влево). При этом в кольцо сдвига может входить или не входить флаг переноса. В бит флага переноса (если он используется) записывается значение старшего бита при циклическом сдвиге влево и младшего бита при циклическом сдвиге вправо. Соответственно, значение бита флага переноса будет переписываться в младший разряд при циклическом сдвиге влево и в старший разряд при циклическом сдвиге вправо.

9 Команды переходов. Команды переходов предназначены для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д., то есть они нарушают последовательный ход выполнения программы. Эти команды записывают в регистр-счетчик команд новое значение и тем самым вызывают переход процессора не к следующей по порядку команде, а к любой другой команде в памяти программ. Некоторые команды переходов предусматривают в дальнейшем возврат назад, в точку, из которой был сделан переход, другие не предусматривают этого. Если возврат предусмотрен, то текущие параметры процессора сохраняются в стеке. Если возврат не предусмотрен, то текущие параметры процессора не сохраняются.

Команды переходов без возврата делятся на две группы:

­ команды безусловных переходов;

­ команды условных переходов.

В обозначениях этих команд используются слова Branch (ветвление) и Jump (прыжок).

Команды безусловных переходов вызывают переход в новый адрес независимо ни от чего. Они могут вызывать переход на указанную величину смещения (вперед или назад) или же на указанный адрес памяти. Величина смещения или новое значение адреса указываются в качестве входного операнда.

Команды условных переходов вызывают переход не всегда, а только при выполнении заданных условий. В качестве таких условий обычно выступают значения флагов в регистре состояния процессора (PSW ). То есть условием перехода является результат предыдущей операции, меняющей значения флагов. Всего таких условий перехода может быть от 4 до 16. Несколько примеров команд условных переходов:

­ переход, если равно нулю;

­ переход, если не равно нулю;

­ переход, если есть переполнение;

­ переход, если нет переполнения;

­ переход, если больше нуля;

­ переход, если меньше или равно нулю.

Если условие перехода выполняется, то производится загрузка в регистр-счетчик команд нового значения. Если же условие перехода не выполняется, счетчик команд просто наращивается, и процессор выбирает и выполняет следующую по порядку команду.

Специально для проверки условий перехода применяется команда сравнения (СМР), предшествующая команде условного перехода (или даже нескольким командам условных переходов). Но флаги могут устанавливаться и любой другой командой, например командой пересылки данных, любой арифметической или логической командой. Отметим, что сами команды переходов флаги не меняют, что как раз и позволяет ставить несколько команд переходов одну за другой.

Особое место среди команд перехода с возвратом занимают команды прерываний. Эти команды в качестве входного операнда требуют номер прерывания (адрес вектора).

Вывод:

Язык ассемблера - это символическое представление машинного языка. Язык ассемблера для каждого типа компьютера свой. Программа на ассемблере представляет собой совокупность блоков памяти, называемых сегментами памяти. Каждый сегмент содержит совокупность предложений языка, каждое из которых занимает отдельную строку кода программы. Предложения ассемблера бывают четырех типов: команды или инструкции, макрокоманды, директивы, строки комментариев.

Допустимыми символами при написании текста программ являются все латинские буквы: A-Z , a-z . При этом заглавные и строчные буквы считаются эквивалентными; цифры от 0 до 9 ; знаки ? , @ , $ , _ , & ; разделители , . () < > { } + / * % ! " " ? = # ^ .

Применяют следующие типы операторов ассемблера и синтаксические правила формирования выражений ассемблера. арифметические операторы, операторы сдвига, операторы сравнения, логические операторы, индексный оператор, оператор переопределения типа, оператор переопределения сегмента, оператор именования типа структуры, оператор получения сегментной составляющей адреса выражения, оператор получения смещения выражения.

Система команд разделена на 8 основных групп.

­ Контрольные вопросы:

1 Что представляет собой язык ассемблера?

2 Какие символы можно применять для записи команд на ассемблере?

3 Что представляют собой метки и их назначение?

4 Пояснить структуру команд ассемблера.

5 Перечислить 4 типа предложений ассемблера.